Featured post

General Ledger Revaluation

General Ledger Revaluation Account balances denominated in foreign currencies are adjusted through the revaluation procedure. Revaluat...

Wednesday, 7 September 2016

Oracle Business Intelligence Applications (OBIA) Fact Tables


Oracle Business Intelligence Applications (OBIA) Fact Tables

This post describes the types of Fact tables found in Oracle Business Intelligence Applications (OBIA) data warehouse – Oracle Business Analytics Warehouse (OBAW).  There will be future posts that describe in detail the other table types in OBIA (Dimension, Internal, etc.).
The 5 types of Fact tables used in the OBAW are:
  1. Transactional
  2. Aggregate
  3. Cycle Lines
  4. Snapshot
  5. State Transition.
The Transactional Fact Table is the main type of fact table. It stores the lowest-level of information from transactional sources. An example of a Fact table in OBIA (Financial Analytics) is: W_GL_BALANCE_F
Note: Fact tables in OBIA end with “_F”.
This table stores the current balance for GL accounts by GL_ACCOUNT and other dimensions.
The Aggregate Fact Table is typically used for performance improvements.  It is a summarized or rolled-up version of the Transactional fact table.  Instead of querying the data at the transactional level – which is the most detailed level and the level with the most records, the Aggregate table allows you to query the data at a more rolled up level when appropriate.  One of the most frequent roll-ups is time – for example, a transactional table at a day level is rolled up to the month level.
Aggregate tables can be tens of times less (or even hundreds) than their transactional versions.  These types of tables are also very common in OBIA and in data warehousing in general.
An example of an Aggregate Fact Table in OBIA (Financial Analytics) is: W_GL_BALANCE_A
Note: Aggregate Fact tables in OBIA end with “_A”.
This table stores the GL account balances aggregated by GL Account Segment and other dimensions. Instead of having data at the GL_ACCOUNT level as in the Transactional fact table, the data is at the GL Account Segment level in the Aggregate table.  Aggregate Fact tables are derived from Transactional Fact  Tables or other Aggregate Fact tables. This table is derived from the transactional fact table mentioned above: W_GL_BALANCE_F.
The Snapshot Fact Table stores “snapshots” of measurements taken at well-defined, predetermined time intervals – such as daily, monthly, annually, etc.  Examples include Inventory and Account Balance snapshots, and AR/AP aging snapshots.  Common items such as financial reports or bank statements are examples of reports from Snapshot Fact tables.
An example of a Snapshot table in OBIA(Supply Chain Analytics) is: W_INVENTORY_DAILY_BAL_F
Oracle’s description of this table will help to clarify its makeup and purpose.
The W_INVENTORY_DAILY_BAL_F fact table is used to represent at a point in time information of all inventory balances and inventory values related to products whose inventory is maintained by the business organization, these would typically include all inbound (purchased from external entities) products as well as outbound (sold to external entities) products. The inventory balance information is trended by copying historical snapshot information from this table at periodic points in time into history table W_INVENTORY_MONTHLY_BAL_F.
The W_INVENTORY_MONTHLY_BAL_F table stores a snapshot of inventory balance.
There is one row for each product and product storage location whose point in time inventory quantity and value information is maintained. The storage location could represent a warehouse or further divisions within a warehouse. This aspect is configurable within the product. All the dimension key links to the other Oracle Business Analytics Warehouse dimension tables, such as W_DAY_D, W_BUSN_LOC_D, W_PRODUCT_D, W_INVENTORY_PRODUCT_D, and so on, represent information associations at that point in time for that product inventory information. The DATE_WID column represents the date on which the inventory balance information is valid.
These tables can also have Aggregate versions:
As mentioned in the description for the W_INVENTORY_DAILY_BAL_F table above, there is an aggregate version.  However, snapshot tables are not necessarily aggregated like transactional tables, because many times the measures are non-additive or semi-additive. For example, you would not take your account monthly balance in January and add it to your account monthly balance in February to determine how much money you have – that would be wrong.
The W_INVENTORY_MONTHLY_BAL_F fact table is used to represent the monthly information of all the inventory balances and the inventory values related to products whose inventory is maintained by the business organization. This information includes all inbound (purchased from external entities) products and outbound (sold to external entities) products. The aggregation period is configurable, and has a preconfigured value of Monthly.
There is one row for each product and product storage location whose point in time (as of a month) inventory quantity and value information is maintained. All the dimension key links to the other Oracle Business Analytics Warehouse dimension tables such as W_DAY_D, W_BUSN_LOC_D, W_PRODUCT_D, W_INVENTORY_PRODUCT_D, and so on, and represents information and associations at that point in time for that product inventory information. The PERIOD_START_DT_WID and PERIOD_END_DT_WID column represents the aggregation bucket start and end dates. The column INV_BALANCE_DT_WID represents the date within this aggregation period on which the inventory balance information is valid.
The Cycle Lines Fact Table store measurements for multiple related business events and are therefore typically derived from multiple fact tables. They typically store process cycle times or provide the ability to easily determine process cycle times.  These tables are also called Accumulating Snapshot Fact tables because they are snapshots of different events accumulated on each other.  An example of a Cycle Lines Fact table is W_PURCH_CYCLE_LINE_F.
Here is Oracle’s description of the table which should help clarify its purpose: W_PURCH_CYCLE_LINE_F table tracks the time duration of all events pertaining to the purchase process commencing with a requisition. Information in this table enables analysis of the direct spend process within an organization beginning with a purchase requisition, its approval, the creation of an approved purchase order, its submission to a supplier, the creation of a purchase schedule and ending with its receipt of the products. It can be used to calculate the time taken to receive products that have been ordered, the time between the first receipt and last receipt of products that have scheduled for delivery. The W_PURCH_CYCLE_LINE_F table contains all the various dates associated with the processes such as submission, approval, ordering and receiving as well as quantities and amounts. While Other spend related fact tables capture individual process such as requesting, ordering, scheduling this table combines all the in one place for ease of analysis and reporting.
These Cycle Lines tables can also have aggregate versions. For example: W_PURCH_CYCLE_LINE_A This is an aggregate table of W_PURCH_CYCLE_LINE_F at a higher level of dimensionality. The Product dimension is replaced by a Product type dimension to give a high level analysis of the sourcing data. It stores Purchase Cycle Line records aggregated over a preconfigured Monthly time period and product types.
State Transition Fact Tables store state-transition metrics based on business events, such as customer state – new, top, dormant, lost, etc – based on the customer order activity.  These tables store or allow you to easily derived counts of the various states.  State Transition Fact tables are derived from Transactional or Snapshot fact tables.
Below are two examples of State Transition Fact tables in OBIA (Marketing Analytics):
The Customer Status History Fact: W_CUSTOMER_STATUS_HIST_F
This is a fact table that tracks the status of customers based on the frequency of orders they place with the organization. Possible statuses are NEW, RECENT, DORMANT and LOST. The time duration for each status bucket is configurable, out of the box being a calendar year.
The grain of this table is at a Customer, Customer Status and the Status Start Date level. Other important columns in this table include the Sold to and the Ship to location for the customer. These are derived based on the status bucket start date against the Customer Locations dimension table.
The Loyalty Member Status History Fact: W_LOY_MEMBER_STATUS_HIST_F
W_LOY_MEMBER_STATUS_HIST_F Fact table stores status changes of Loyalty members. Grain: One record for each member status changed.
That’s it for OBIA fact tables.  Understanding the types of fact tables and their purpose helps us to make better design choices when we set out to build new fact tables to represent business events, and it also helps us to quicker recognize and better analyze the data in these tables.
I hope you found this information useful. If you have information about other fact table types, please share.

1 comment:

  1. “Benjamin Briel Lee was very professional at all times, keeping me aware of everything that was happening, If I had any questions he was always available to answer. This was my first home purchase, I didn’t know much about the loan process, he made it very easy to understand the things I had questions about. I really enjoyed working with him.”  
    He's a loan officer working with a group of investor's who are willing to fund any project or loan you any amount with a very low interest.Contact Benjamin Briel Lee E-Mail: 247officedept@gmail.com  Whats-App Number: +1-989-394-3740.

    ReplyDelete

Please review my topic and update your comments

Note: only a member of this blog may post a comment.